Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659941

RESUMO

In search for broad-spectrum antivirals, we discovered a small molecule inhibitor, RMC-113, that potently suppresses the replication of multiple RNA viruses including SARS-CoV-2 in human lung organoids. We demonstrated selective dual inhibition of the lipid kinases PIP4K2C and PIKfyve by RMC-113 and target engagement by its clickable analog. Advanced lipidomics revealed alteration of SARS-CoV-2-induced phosphoinositide signature by RMC-113 and linked its antiviral effect with functional PIP4K2C and PIKfyve inhibition. We discovered PIP4K2C's roles in SARS-CoV-2 entry, RNA replication, and assembly/egress, validating it as a druggable antiviral target. Integrating proteomics, single-cell transcriptomics, and functional assays revealed that PIP4K2C binds SARS-CoV-2 nonstructural protein 6 and regulates virus-induced impairment of autophagic flux. Reversing this autophagic flux impairment is a mechanism of antiviral action of RMC-113. These findings reveal virus-induced autophagy regulation via PIP4K2C, an understudied kinase, and propose dual inhibition of PIP4K2C and PIKfyve as a candidate strategy to combat emerging viruses.

2.
J Wildl Dis ; 60(2): 362-374, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345467

RESUMO

Mass mortality events in wildlife can be indications of an emerging infectious disease. During the spring and summer of 2021, hundreds of dead passerines were reported across the eastern US. Birds exhibited a range of clinical signs including swollen conjunctiva, ocular discharge, ataxia, and nystagmus. As part of the diagnostic investigation, high-throughput metagenomic next-generation sequencing was performed across three molecular laboratories on samples from affected birds. Many potentially pathogenic microbes were detected, with bacteria forming the largest proportion; however, no singular agent was consistently identified, with many of the detected microbes also found in unaffected (control) birds and thus considered to be subclinical infections. Congruent results across laboratories have helped drive further investigation into alternative causes, including environmental contaminants and nutritional deficiencies. This work highlights the utility of metagenomic approaches in investigations of emerging diseases and provides a framework for future wildlife mortality events.


Assuntos
Doenças Transmissíveis Emergentes , Aves Canoras , Animais , Animais Selvagens , Metagenoma , Bactérias/genética , Doenças Transmissíveis Emergentes/veterinária , Metagenômica/métodos
3.
Sci Adv ; 10(3): eadk1057, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241369

RESUMO

Preterm birth affects ~10% of pregnancies in the US. Despite familial associations, identifying at-risk genetic loci has been challenging. We built deep learning and graphical models to score mutational effects at base resolution via integrating the pregnant myometrial epigenome and large-scale patient genomes with spontaneous preterm birth (sPTB) from European and African American cohorts. We uncovered previously unidentified sPTB genes that are involved in myometrial muscle relaxation and inflammatory responses and that are regulated by the progesterone receptor near labor onset. We studied genomic variants in these genes in our recruited pregnant women administered progestin prophylaxis. We observed that mutation burden in these genes was predictive of responses to progestin treatment for preterm birth. To advance therapeutic development, we screened ~4000 compounds, identified candidate molecules that affect our identified genes, and experimentally validated their therapeutic effects on regulating labor. Together, our integrative approach revealed the druggable genome in preterm birth and provided a generalizable framework for studying complex diseases.


Assuntos
Nascimento Prematuro , Recém-Nascido , Feminino , Humanos , Gravidez , Nascimento Prematuro/genética , Progestinas , Loci Gênicos , Mutação
4.
Nat Biotechnol ; 42(1): 109-118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37106037

RESUMO

Molecular mechanisms of organismal and cell aging remain incompletely understood. We, therefore, generated a body-wide map of noncoding RNA (ncRNA) expression in aging (16 organs at ten timepoints from 1 to 27 months) and rejuvenated mice. We found molecular aging trajectories are largely tissue-specific except for eight broadly deregulated microRNAs (miRNAs). Their individual abundance mirrors their presence in circulating plasma and extracellular vesicles (EVs) whereas tissue-specific ncRNAs were less present. For miR-29c-3p, we observe the largest correlation with aging in solid organs, plasma and EVs. In mice rejuvenated by heterochronic parabiosis, miR-29c-3p was the most prominent miRNA restored to similar levels found in young liver. miR-29c-3p targets the extracellular matrix and secretion pathways, known to be implicated in aging. We provide a map of organism-wide expression of ncRNAs with aging and rejuvenation and identify a set of broadly deregulated miRNAs, which may function as systemic regulators of aging via plasma and EVs.


Assuntos
MicroRNAs , Camundongos , Animais , MicroRNAs/metabolismo , Envelhecimento/genética , Fígado/metabolismo , Parabiose
5.
Blood Adv ; 8(7): 1820-1833, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38096800

RESUMO

ABSTRACT: Recombination-activating genes (RAG1 and RAG2) are critical for lymphoid cell development and function by initiating the variable (V), diversity (D), and joining (J) (V(D)J)-recombination process to generate polyclonal lymphocytes with broad antigen specificity. The clinical manifestations of defective RAG1/2 genes range from immune dysregulation to severe combined immunodeficiencies (SCIDs), causing life-threatening infections and death early in life without hematopoietic cell transplantation (HCT). Despite improvements, haploidentical HCT without myeloablative conditioning carries a high risk of graft failure and incomplete immune reconstitution. The RAG complex is only expressed during the G0-G1 phase of the cell cycle in the early stages of T- and B-cell development, underscoring that a direct gene correction might capture the precise temporal expression of the endogenous gene. Here, we report a feasibility study using the CRISPR/Cas9-based "universal gene-correction" approach for the RAG2 locus in human hematopoietic stem/progenitor cells (HSPCs) from healthy donors and RAG2-SCID patient. V(D)J-recombinase activity was restored after gene correction of RAG2-SCID-derived HSPCs, resulting in the development of T-cell receptor (TCR) αß and γδ CD3+ cells and single-positive CD4+ and CD8+ lymphocytes. TCR repertoire analysis indicated a normal distribution of CDR3 length and preserved usage of the distal TRAV genes. We confirmed the in vivo rescue of B-cell development with normal immunoglobulin M surface expression and a significant decrease in CD56bright natural killer cells. Together, we provide specificity, toxicity, and efficacy data supporting the development of a gene-correction therapy to benefit RAG2-deficient patients.


Assuntos
Proteínas de Homeodomínio , Imunodeficiência Combinada Severa , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , VDJ Recombinases
6.
mBio ; : e0131823, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938000

RESUMO

Hepatitis C virus (HCV) is the leading cause of death from liver disease. How HCV infection causes lasting liver damage and increases cancer risk remains unclear. Here, we identify bipotent liver stem cells as novel targets for HCV infection, and their erroneous differentiation as the potential cause of impaired liver regeneration and cancer development. We show 3D organoids generated from liver stem cells from actively HCV-infected individuals carry replicating virus and maintain low-grade infection over months. Organoids can be infected with a primary HCV isolate. Virus-inclusive single-cell RNA sequencing uncovered transcriptional reprogramming in HCV+ cells supporting hepatocytic differentiation, cancer stem cell development, and viral replication while stem cell proliferation and interferon signaling are disrupted. Our data add a new pathogenesis mechanism-infection of liver stem cells-to the biology of HCV infection that may explain progressive liver damage and enhanced cancer risk through an altered stem cell state.ImportanceThe hepatitis C virus (HCV) causes liver disease, affecting millions. Even though we have effective antivirals that cure HCV, they cannot stop terminal liver disease. We used an adult stem cell-derived liver organoid system to understand how HCV infection leads to the progression of terminal liver disease. Here, we show that HCV maintains low-grade infections in liver organoids for the first time. HCV infection in liver organoids leads to transcriptional reprogramming causing cancer cell development and altered immune response. Our finding shows how HCV infection in liver organoids mimics HCV infection and patient pathogenesis. These results reveal that HCV infection in liver organoids contributes to liver disease progression.

7.
Elife ; 122023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37830426

RESUMO

Background: Infection by coronavirus SARS-CoV2 is a severe and often deadly disease that has implications for the respiratory system and multiple organs across the human body. While the effects in the lung have been extensively studied, less is known about the impact COVID-19 has across other organs. Methods: Here, we contribute a single-nuclei RNA-sequencing atlas comprising six human organs across 20 autopsies where we analyzed the transcriptional changes due to COVID-19 in multiple cell types. The integration of data from multiple organs enabled the identification of systemic transcriptional changes. Results: Computational cross-organ analysis for endothelial cells and macrophages identified systemic transcriptional changes in these cell types in COVID-19 samples. In addition, analysis of gene modules showed enrichment of specific signaling pathways across multiple organs in COVID-19 autopsies. Conclusions: Altogether, the COVID Tissue Atlas enables the investigation of both cell type-specific and cross-organ transcriptional responses to COVID-19, providing insights into the molecular networks affected by the disease and highlighting novel potential targets for therapies and drug development. Funding: The Chan-Zuckerberg Initiative, The Chan-Zuckerberg Biohub.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Células Endoteliais , RNA Viral , Pulmão
8.
bioRxiv ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37808827

RESUMO

Humans constantly encounter new microbes, but few become long-term residents of the adult gut microbiome. Classical theories predict that colonization is determined by the availability of open niches, but it remains unclear whether other ecological barriers limit commensal colonization in natural settings. To disentangle these effects, we used a controlled perturbation with the antibiotic ciprofloxacin to investigate the dynamics of gut microbiome transmission in 22 households of healthy, cohabiting adults. Colonization was rare in three-quarters of antibiotic-taking subjects, whose resident strains rapidly recovered in the week after antibiotics ended. In contrast, the remaining antibiotic-taking subjects exhibited lasting responses, with extensive species losses and transient expansions of potential opportunistic pathogens. These subjects experienced elevated rates of commensal colonization, but only after long delays: many new colonizers underwent sudden, correlated expansions months after the antibiotic perturbation. Furthermore, strains that had previously transmitted between cohabiting partners rarely recolonized after antibiotic disruptions, showing that colonization displays substantial historical contingency. This work demonstrates that there remain substantial ecological barriers to colonization even after major microbiome disruptions, suggesting that dispersal interactions and priority effects limit the pace of community change.

9.
Front Cell Infect Microbiol ; 13: 1241608, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37712060

RESUMO

Multidrug-resistant (MDR) Pseudomonas aeruginosa has been declared a serious threat by the United States Centers for Disease Control and Prevention. Here, we used whole genome sequencing (WGS) to investigate recurrent P. aeruginosa bloodstream infections in a severely immunocompromised patient. The infections demonstrated unusual, progressive increases in resistance to beta lactam antibiotics in the setting of active treatment with appropriate, guideline-directed agents. WGS followed by comparative genomic analysis of isolates collected over 44 days demonstrated in host evolution of a single P. aeruginosa isolate characterized by stepwise acquisition of two de-novo genetic resistance mechanisms over the course of treatment. We found a novel deletion affecting the ampC repressor ampD and neighboring gene ampE, which associated with initial cefepime treatment failure. This was followed by acquisition of a porin nonsense mutation, OprD, associated with resistance to carbapenems. This study highlights the potential for in-host evolution of P. aeruginosa during bloodstream infections in severely immunocompromised patients despite appropriate antimicrobial therapy. In addition, it demonstrates the utility of WGS for understanding unusual resistance patterns in the clinical context.


Assuntos
Bacteriemia , Sepse , Estados Unidos , Humanos , Pseudomonas aeruginosa/genética , Resistência beta-Lactâmica , Carbapenêmicos , Bacteriemia/tratamento farmacológico
10.
Nature ; 619(7971): 860-867, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468622

RESUMO

Many cancers originate from stem or progenitor cells hijacked by somatic mutations that drive replication, exemplified by adenomatous transformation of pulmonary alveolar epithelial type II (AT2) cells1. Here we demonstrate a different scenario: expression of KRAS(G12D) in differentiated AT1 cells reprograms them slowly and asynchronously back into AT2 stem cells that go on to generate indolent tumours. Like human lepidic adenocarcinoma, the tumour cells slowly spread along alveolar walls in a non-destructive manner and have low ERK activity. We find that AT1 and AT2 cells act as distinct cells of origin and manifest divergent responses to concomitant WNT activation and KRAS(G12D) induction, which accelerates AT2-derived but inhibits AT1-derived adenoma proliferation. Augmentation of ERK activity in KRAS(G12D)-induced AT1 cells increases transformation efficiency, proliferation and progression from lepidic to mixed tumour histology. Overall, we have identified a new cell of origin for lung adenocarcinoma, the AT1 cell, which recapitulates features of human lepidic cancer. In so doing, we also uncover a capacity for oncogenic KRAS to reprogram a differentiated and quiescent cell back into its parent stem cell en route to adenomatous transformation. Our work further reveals that irrespective of a given cancer's current molecular profile and driver oncogene, the cell of origin exerts a pervasive and perduring influence on its subsequent behaviour.


Assuntos
Adenocarcinoma de Pulmão , Reprogramação Celular , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Células-Tronco , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Reprogramação Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
11.
Nat Protoc ; 18(7): 2256-2282, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37316563

RESUMO

Human skeletal stem cells (hSSCs) hold tremendous therapeutic potential for developing new clinical strategies to effectively combat congenital and age-related musculoskeletal disorders. Unfortunately, refined methodologies for the proper isolation of bona fide hSSCs and the development of functional assays that accurately recapitulate their physiology within the skeleton have been lacking. Bone marrow-derived mesenchymal stromal cells (BMSCs), commonly used to describe the source of precursors for osteoblasts, chondrocytes, adipocytes and stroma, have held great promise as the basis of various approaches for cell therapy. However, the reproducibility and clinical efficacy of these attempts have been obscured by the heterogeneous nature of BMSCs due to their isolation by plastic adherence techniques. To address these limitations, our group has refined the purity of individual progenitor populations that are encompassed by BMSCs by identifying defined populations of bona fide hSSCs and their downstream progenitors that strictly give rise to skeletally restricted cell lineages. Here, we describe an advanced flow cytometric approach that utilizes an extensive panel of eight cell surface markers to define hSSCs; bone, cartilage and stromal progenitors; and more differentiated unipotent subtypes, including an osteogenic subset and three chondroprogenitors. We provide detailed instructions for the FACS-based isolation of hSSCs from various tissue sources, in vitro and in vivo skeletogenic functional assays, human xenograft mouse models and single-cell RNA sequencing analysis. This application of hSSC isolation can be performed by any researcher with basic skills in biology and flow cytometry within 1-2 days. The downstream functional assays can be performed within a range of 1-2 months.


Assuntos
Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Linhagem da Célula , Reprodutibilidade dos Testes , Diferenciação Celular/fisiologia , Osso e Ossos , Células da Medula Óssea , Células Cultivadas
12.
Cell ; 186(14): 3111-3124.e13, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37348505

RESUMO

The gut microbiome modulates immune and metabolic health. Human microbiome data are biased toward industrialized populations, limiting our understanding of non-industrialized microbiomes. Here, we performed ultra-deep metagenomic sequencing on 351 fecal samples from the Hadza hunter-gatherers of Tanzania and comparative populations in Nepal and California. We recovered 91,662 genomes of bacteria, archaea, bacteriophages, and eukaryotes, 44% of which are absent from existing unified datasets. We identified 124 gut-resident species vanishing in industrialized populations and highlighted distinct aspects of the Hadza gut microbiome related to in situ replication rates, signatures of selection, and strain sharing. Industrialized gut microbes were found to be enriched in genes associated with oxidative stress, possibly a result of microbiome adaptation to inflammatory processes. This unparalleled view of the Hadza gut microbiome provides a valuable resource, expands our understanding of microbes capable of colonizing the human gut, and clarifies the extensive perturbation induced by the industrialized lifestyle.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Metagenoma , Eucariotos , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica
13.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009900

RESUMO

BACKGROUNDLower respiratory tract infection (LRTI) is a leading cause of death in children worldwide. LRTI diagnosis is challenging because noninfectious respiratory illnesses appear clinically similar and because existing microbiologic tests are often falsely negative or detect incidentally carried microbes, resulting in antimicrobial overuse and adverse outcomes. Lower airway metagenomics has the potential to detect host and microbial signatures of LRTI. Whether it can be applied at scale and in a pediatric population to enable improved diagnosis and treatment remains unclear.METHODSWe used tracheal aspirate RNA-Seq to profile host gene expression and respiratory microbiota in 261 children with acute respiratory failure. We developed a gene expression classifier for LRTI by training on patients with an established diagnosis of LRTI (n = 117) or of noninfectious respiratory failure (n = 50). We then developed a classifier that integrates the host LRTI probability, abundance of respiratory viruses, and dominance in the lung microbiome of bacteria/fungi considered pathogenic by a rules-based algorithm.RESULTSThe host classifier achieved a median AUC of 0.967 by cross-validation, driven by activation markers of T cells, alveolar macrophages, and the interferon response. The integrated classifier achieved a median AUC of 0.986 and increased the confidence of patient classifications. When applied to patients with an uncertain diagnosis (n = 94), the integrated classifier indicated LRTI in 52% of cases and nominated likely causal pathogens in 98% of those.CONCLUSIONLower airway metagenomics enables accurate LRTI diagnosis and pathogen identification in a heterogeneous cohort of critically ill children through integration of host, pathogen, and microbiome features.FUNDINGSupport for this study was provided by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the National Heart, Lung, and Blood Institute (UG1HD083171, 1R01HL124103, UG1HD049983, UG01HD049934, UG1HD083170, UG1HD050096, UG1HD63108, UG1HD083116, UG1HD083166, UG1HD049981, K23HL138461, and 5R01HL155418) as well as by the Chan Zuckerberg Biohub.


Assuntos
Microbiota , Infecções Respiratórias , Humanos , Criança , Metagenômica , Estado Terminal , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia , Pulmão
14.
Cell ; 186(6): 1179-1194.e15, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931245

RESUMO

The human brain undergoes rapid development at mid-gestation from a pool of neural stem and progenitor cells (NSPCs) that give rise to the neurons, oligodendrocytes, and astrocytes of the mature brain. Functional study of these cell types has been hampered by a lack of precise purification methods. We describe a method for prospectively isolating ten distinct NSPC types from the developing human brain using cell-surface markers. CD24-THY1-/lo cells were enriched for radial glia, which robustly engrafted and differentiated into all three neural lineages in the mouse brain. THY1hi cells marked unipotent oligodendrocyte precursors committed to an oligodendroglial fate, and CD24+THY1-/lo cells marked committed excitatory and inhibitory neuronal lineages. Notably, we identify and functionally characterize a transcriptomically distinct THY1hiEGFRhiPDGFRA- bipotent glial progenitor cell (GPC), which is lineage-restricted to astrocytes and oligodendrocytes, but not to neurons. Our study provides a framework for the functional study of distinct cell types in human neurodevelopment.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Humanos , Células-Tronco Neurais/metabolismo , Neurônios , Diferenciação Celular/fisiologia , Neuroglia/metabolismo , Encéfalo , Astrócitos
15.
Elife ; 122023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719070

RESUMO

Nutrient availability fluctuates in most natural populations, forcing organisms to undergo periods of fasting and re-feeding. It is unknown how dietary changes influence liver homeostasis. Here, we show that a switch from ad libitum feeding to intermittent fasting (IF) promotes rapid hepatocyte proliferation. Mechanistically, IF-induced hepatocyte proliferation is driven by the combined action of systemic FGF15 and localized WNT signaling. Hepatocyte proliferation during periods of fasting and re-feeding re-establishes a constant liver-to-body mass ratio, thus maintaining the hepatostat. This study provides the first example of dietary influence on adult hepatocyte proliferation and challenges the widely held view that liver tissue is mostly quiescent unless chemically or mechanically injured.


Assuntos
Jejum Intermitente , Regeneração Hepática , Camundongos , Animais , Fígado , Jejum , Hepatócitos , Proliferação de Células
16.
bioRxiv ; 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36711771

RESUMO

Diet can impact host health through changes to the gut microbiota, yet we lack mechanistic understanding linking nutrient availability and microbiota composition. Here, we use thousands of microbial communities cultured in vitro from human feces to uncover simple assembly rules and develop a predictive model of community composition upon addition of single nutrients from central carbon metabolism to a complex medium. Community membership was largely determined by the donor feces, whereas relative abundances were determined by the supplemental carbon source. The absolute abundance of most taxa was independent of the supplementing nutrient, due to the ability of fast-growing organisms to quickly exhaust their niche in the complex medium and then exploit and monopolize the supplemental carbon source. Relative abundances of dominant taxa could be predicted from the nutritional preferences and growth dynamics of species in isolation, and exceptions were consistent with strain-level variation in growth capabilities. Our study reveals that community assembly follows simple rules of nutrient utilization dynamics and provides a predictive framework for manipulating gut commensal communities through nutritional perturbations.

17.
Infect Control Hosp Epidemiol ; 44(1): 40-46, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35311638

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen in neonatal intensive care units (NICU) that confers significant morbidity and mortality. OBJECTIVE: Improving our understanding of MRSA transmission dynamics, especially among high-risk patients, is an infection prevention priority. METHODS: We investigated a cluster of clinical MRSA cases in the NICU using a combination of epidemiologic review and whole-genome sequencing (WGS) of isolates from clinical and surveillance cultures obtained from patients and healthcare personnel (HCP). RESULTS: Phylogenetic analysis identified 2 genetically distinct phylogenetic clades and revealed multiple silent-transmission events between HCP and infants. The predominant outbreak strain harbored multiple virulence factors. Epidemiologic investigation and genomic analysis identified a HCP colonized with the dominant MRSA outbreak strain who cared for most NICU patients who were infected or colonized with the same strain, including 1 NICU patient with severe infection 7 months before the described outbreak. These results guided implementation of infection prevention interventions that prevented further transmission events. CONCLUSIONS: Silent transmission of MRSA between HCP and NICU patients likely contributed to a NICU outbreak involving a virulent MRSA strain. WGS enabled data-driven decision making to inform implementation of infection control policies that mitigated the outbreak. Prospective WGS coupled with epidemiologic analysis can be used to detect transmission events and prompt early implementation of control strategies.


Assuntos
Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Recém-Nascido , Lactente , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Unidades de Terapia Intensiva Neonatal , Infecção Hospitalar/epidemiologia , Infecções Estafilocócicas/prevenção & controle , Virulência/genética , Estudos Prospectivos , Filogenia , Surtos de Doenças/prevenção & controle , Controle de Infecções/métodos , Genômica
18.
Life Sci Alliance ; 6(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526371

RESUMO

Spatial transcriptomics extends single-cell RNA sequencing (scRNA-seq) by providing spatial context for cell type identification and analysis. Imaging-based spatial technologies such as multiplexed error-robust fluorescence in situ hybridization (MERFISH) can achieve single-cell resolution, directly mapping single-cell identities to spatial positions. MERFISH produces a different data type than scRNA-seq, and a technical comparison between the two modalities is necessary to ascertain how to best integrate them. We performed MERFISH on the mouse liver and kidney and compared the resulting bulk and single-cell RNA statistics with those from the Tabula Muris Senis cell atlas and from two Visium datasets. MERFISH quantitatively reproduced the bulk RNA-seq and scRNA-seq results with improvements in overall dropout rates and sensitivity. Finally, we found that MERFISH independently resolved distinct cell types and spatial structure in both the liver and kidney. Computational integration with the Tabula Muris Senis atlas did not enhance these results. We conclude that MERFISH provides a quantitatively comparable method for single-cell gene expression and can identify cell types without the need for computational integration with scRNA-seq atlases.


Assuntos
Análise de Célula Única , Transcriptoma , Camundongos , Animais , Hibridização in Situ Fluorescente/métodos , Análise de Célula Única/métodos , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , RNA-Seq
19.
mSystems ; 8(1): e0067122, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36507688

RESUMO

The continued emergence of SARS-CoV-2 variants is one of several factors that may cause false-negative viral PCR test results. Such tests are also susceptible to false-positive results due to trace contamination from high viral titer samples. Host immune response markers provide an orthogonal indication of infection that can mitigate these concerns when combined with direct viral detection. Here, we leverage nasopharyngeal swab RNA-seq data from patients with COVID-19, other viral acute respiratory illnesses, and nonviral conditions (n = 318) to develop support vector machine classifiers that rely on a parsimonious 2-gene host signature to diagnose COVID-19. We find that optimal classifiers include an interferon-stimulated gene that is strongly induced in COVID-19 compared with nonviral conditions, such as IFI6, and a second immune-response gene that is more strongly induced in other viral infections, such as GBP5. The IFI6+GBP5 classifier achieves an area under the receiver operating characteristic curve (AUC) greater than 0.9 when evaluated on an independent RNA-seq cohort (n = 553). We further provide proof-of-concept demonstration that the classifier can be implemented in a clinically relevant RT-qPCR assay. Finally, we show that its performance is robust across common SARS-CoV-2 variants and is unaffected by cross-contamination, demonstrating its utility for improved accuracy of COVID-19 diagnostics. IMPORTANCE In this work, we study upper respiratory tract gene expression to develop and validate a 2-gene host-based COVID-19 diagnostic classifier and then demonstrate its implementation in a clinically practical qPCR assay. We find that the host classifier has utility for mitigating false-negative results, for example due to SARS-CoV-2 variants harboring mutations at primer target sites, and for mitigating false-positive viral PCR results due to laboratory cross-contamination. Both types of error carry serious consequences of either unrecognized viral transmission or unnecessary isolation and contact tracing. This work is directly relevant to the ongoing COVID-19 pandemic given the continued emergence of viral variants and the continued challenges of false-positive PCR assays. It also suggests the feasibility of pan-respiratory virus host-based diagnostics that would have value in congregate settings, such as hospitals and nursing homes, where unrecognized respiratory viral transmission is of particular concern.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Teste para COVID-19 , Pandemias , Sensibilidade e Especificidade
20.
Cell Rep ; 41(11): 111803, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516757

RESUMO

Nonalcoholic fatty liver disease (NAFLD) can be ameliorated by calorie restriction, which leads to the suppressed somatotroph axis. Paradoxically, the suppressed somatotroph axis is associated with patients with NAFLD and is correlated with the severity of fibrosis. How the somatotroph axis becomes dysregulated and whether the repressed somatotroph axis impacts liver damage during the progression of NAFLD are unclear. Here, we identify a regulatory branch of the hepatic integrated stress response (ISR), which represses the somatotroph axis in hepatocytes through ATF3, resulting in enhanced cell survival and reduced cell proliferation. In mouse models of NAFLD, the ISR represses the somatotroph axis, leading to reduced apoptosis and inflammation but decreased hepatocyte proliferation and exacerbated fibrosis in the liver. NAD+ repletion reduces the ISR, rescues the dysregulated somatotroph axis, and alleviates NAFLD. These results establish that the hepatic ISR suppresses the somatotroph axis to control cell fate decisions and liver damage in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Somatotrofos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/patologia , Hepatócitos/patologia , Cirrose Hepática/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...